Step of Proof: squash_thru_equiv_rel
12,41
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
squash
thru
equiv
rel
:
1.
T
: Type
2.
E
:
T
T
3. (
a
:
T
.
E
(
a
,
a
)) & (
a
,
b
:
T
.
E
(
a
,
b
)
E
(
b
,
a
)) & (
a
,
b
,
c
:
T
.
E
(
a
,
b
)
E
(
b
,
c
)
E
(
a
,
c
))
4.
a
:
T
5.
b
:
T
6.
E
(
a
,
b
)
E
(
b
,
a
)
latex
by ((Sel 2 (BackThruHyp 3))
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat
C
4:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
&
Q
origin